.

Sunday, March 3, 2019

Solubilities Within a Family Lab Report

Purpose/Objective The purpose of this sample is to identify the annual trends in the solubility of the alkalic humans metals and comp are the results to that of rent Materials 1. Pencil 2. science laboratory notebook 3. 5 sm on the whole turn up tubes 4. Droppers Chemicals 1. 0. 2 M Mg(NO3)2 2. 0. 2 M Ca(NO3)2 3. 0. 2 M Sr(NO3)2 4. 0. 2 M Ba(NO3)2 5. 0. 2 M Pb(NO3)2 6. 1 M NaOH 7. 0. 2 M NaBr 8. 0. 2 M NaI 9. 0. 2 M Na2SO4 10. 0. 1 M Na2CO3 11. 0. 2 M Na2C2O4 12. 1 M NaCl Data and Results Mg(NO3)2Ca(NO3)2Sr(NO3)2Ba(NO3)2Pb(NO3)2 NaOHCloudyMilkyCloudyCloudyMilky NaClNo reactionNo reactionNo reactionNo reactionPowderNaBrNo reactionNo reactionNo reactionNo reactionCloudy NaINo reactionNo reactionNo reactionCloudyBright Yellow Na2SO4No reactionNo reactionWhite, yogurt-likeMilkyMilky Na2CO3MilkyMilkyPowderWhite, cotton-likePowder Na2C2O4No reactionMilkyMilkyPowderPowder Sample Calculations None ? Discussion and Comments This experiment well-tried the possible action that the elem ents in the periodic table are arranged in a manner in which the elements of a group share quasi(prenominal) chemical properties. The elements we used were the ones from the saltlike commonwealth metal group.These elements tend to jump 2+ cations and are re all(prenominal)y reactive. We in like manner compared these elements to that of live on because lead also forms a 2+ cation. We used the chemical property of solubility to keep up the periodic trends of the saltlike flat coat metals. As a general rule, reactivity increases as you move chain reactor a group in the periodic table. This means in regards to solubility that the more you farther you move down the group the more insoluble the element is when combined with hydroxides, chlorides, bromides, iodides, sulfates, carbonates, and oxalates.My results were consistent with this theory in that the mixtures went from no reaction to forming a precipitate or from forming a light precipitate to a heavy one as the elements travel down the periodic table. The precipitates that were make gradually changed from a cloudy or milky mixture to a heavy solid precipitate that would harmonise on the bottom of the test tube. In some instances lead reacted very similarly with the alkalescent res publica metal but very disparate in the other reactions such as with iodide.This is due to leads position on the periodic table as compared to those of the alkaline footing metals. The position on the periodic table correlates to an elements nuclear radius, ionization energy, and electron affinity. All of these properties affect an elements chemical properties such as solubility. A systematic error occurred during my experiment when I observed a reaction mingled with barium and iodide. There should bedevil been no reaction. This error is probably the result of using a test tube that was not cleaned properly prior to combining Ba(NO3)2 with NaI.This experiment strengthened the concepts introduced in Chapter 8 of o ur textbook. Pre-Lab Questions 1. The names and symbols of the alkaline earth metals encountered in this experiment are a. Magnesium Mg b. Barium Ba c. Strontium Sr d. Calcium Ca 2. a. The general electron configuration of the alkaline earth metals is Noble gasns2. b. The electron configuration for lead, Pb, is Xe6s25d104f146p2. c. All the formulas of the oxides formed by the alkaline earth metals and lead have the general formula of RO. 3.The general formulas for the following compounds with alkaline earth metals or lead a. RSO4 b. RCl2 c. RCO3 d. RI2 e. RBr2 f. RC2O4 g. R(OH)2 h. R(NO3)2 i. RCrO4 4. The general method that was used to take apart qualitative solubilities in this experiment is observation. Post Lab Questions 1. The solubility of the alkaline earth metals with hydroxides increases as you move down the group soluble with halides with sulfates, carbonates and oxalates decreases as you move down the group down the group. 2. The solubilities between alkaline earth m etals and lead with NaOH are similar ecause all of the reactions were either cloudy or milky. The solubilities between alkaline earth metals and lead with NaCl are assorted because all of the alkaline earth metals are soluble but lead is not. The solubilities between alkaline earth metals and lead with NaBr are different because all of the alkaline earth metals are soluble but lead is not. The solubilities between alkaline earth metals and lead with iodide are different because all of the alkaline earth metals are soluble but lead is not soluble and formed a bright yellow precipitate.The solubilities of Mg and Ca with SO4 are different because they are soluble but lead is not and solubilities of Sr and Ba are similar to lead. The solubilities between alkaline earth metals and lead with CO3 are similar since all of compounds form some sort of a unclouded precipitate. The solubility of Mg with C2O4 is different from lead because it is soluble but lead is not and solubilities of rest of alkaline earth metals are similar because they all form some sort of white precipitate. . The solubilities of the alkaline earth metals and that of lead may differ markedly due to their respective electron configurations. The alkaline earth metals like to give up two electrons from their outer scramble and form cations because by doing so their electron configuration becomes isoelectronic with the closest distinguished gas. Lead looses its to electrons from the 6p suborbital. Resources Chang, R. (2010). Chemistry 10th Edition. New York, NY McGraw Hill.

No comments:

Post a Comment